

# RAW WATER ASSESSMENT: TAY AREA AND ROPE SUBDIVISION INTAKES

April 2020



Severn Sound Environmental Association Aisha Chiandet, Water Scientist

# Contents

| List of Tables1                                                                                    |
|----------------------------------------------------------------------------------------------------|
| List of Figures1                                                                                   |
| Purpose1                                                                                           |
| Background1                                                                                        |
| Sampling Methods2                                                                                  |
| Intake Sampling3                                                                                   |
| Open Waters – Hogg Bay and Severn River Mouth3                                                     |
| Results4                                                                                           |
| Temperature4                                                                                       |
| General Chemistry5                                                                                 |
| Nutrient Chemistry6                                                                                |
| Heavy Metals7                                                                                      |
| Bacteria8                                                                                          |
| Nuisance Algae and Algal Compounds9                                                                |
| Taste and Odour12                                                                                  |
| Microcystin15                                                                                      |
| Potential for Event-driven Fluctuations in Water Quality                                           |
| Summary                                                                                            |
| Recommendations                                                                                    |
| References                                                                                         |
| Appendix A – Recent water quality summary statistics, 2015-2019 22                                 |
| Appendix B – Long Term Summary Statistics and Long Term Trend Analysis for Water Quality           |
| Appendix C – Algal Taste and Odour and Toxin Compounds from Station PM6 (SSEA data)                |
| Appendix D - Annual algae biovolume by major algal classes from 2012-2016 for PM1, PM2, PM6 and PS |
| Appendix E - Annual algae biovolume by major algal classes from 1994-2016 for PM1, PM2, PS         |

### List of Tables

| Table 1. General chemistry variables sampled at or in the vicinity of the TAWTP and    |   |
|----------------------------------------------------------------------------------------|---|
| RSWTP from 2015-2019                                                                   | 5 |
| Table 2. Nutrients relevant for drinking water standards at or in the vicinity of the  |   |
| TAWTP and RSWTP from 2015-2019                                                         | 6 |
| Table 3. Trace metal concentrations at or in the vicinity of the TAWTP from 2015-2019. | 7 |
| Table 4. E. coli densities in raw water at the TAWTP and RSWTP from 2015-19            | 8 |
| Table 5. Summary of medians over each period, 2010-2014 and 2015-2019 along with       |   |
| the direction of change using a 2-sample Wilcoxon test1                                | 9 |

# List of Figures

| Figure 1. Tay water intakes and nearest SSEA water quality monitoring stations2    |
|------------------------------------------------------------------------------------|
| Figure 2. Long term temperature trends based on annual mean temperature at 1m      |
| below surface4                                                                     |
| Figure 3. Seasonal algae biovolume by major algal classes from 2012-2016 for PM2   |
| and PM6. Seasonal values were averaged over each biweekly period10                 |
| Figure 4. Biovolume of common taste and odour causing algae for PM2 and PM6 from   |
| 2012-2016                                                                          |
| Figure 5. Biovolume of common microcystin-producing blue-green algae, including    |
| Aphanizomenon, Dolichospermum, Planktothrix, Pseudanabaena, and Microcystis for    |
| PM2 and PM6 from 2012-2016 12                                                      |
| Figure 6. Taste and odour concentrations at the TAWTP raw water intake from 2016-  |
| 2019                                                                               |
| Figure 7. Taste and odour concentrations at the RSWTP raw water intake from 2017-  |
| 2019 based on Township sampling15                                                  |
| Figure 8. Microcystin concentrations at the TAWTP raw water intake from 2016-2019. |
| The 2017-2019 graphs includes results from municipal as well as SSEA sampling16    |
| Figure 9. Location of drinking water intakes in Tay Township, as well as intake    |
| protection zones 1-3 (South Georgian Bay-Lake Simcoe Source Protection Committee,  |
| 2015)                                                                              |

### Purpose

This report provides a general water quality assessment that included trends, current conditions, and a discussion on algae compounds and abundance for surface water sources for both Township of Tay intakes, at the Rope Subdivision and Tay Area Water Treatment Plants. This information will be used by the Township of Tay to assess and demonstrate that:

- 1. The source water has not substantively deteriorated or varied since the issuance of the renewed Licence [in 2015], and;
- 2. Existing unit processes of the treatment system continue to be appropriate and effective for the treatment of the source water [to be assessed by the Township].

This report serves as an update to the last raw water assessment which was completed in 2015.

Knowing the quality of the raw source water for municipal drinking water is critical in the multi-barrier approach to protecting municipal source water drinking water. This includes having a good understanding of current conditions and variability, and recent trends. This information will help water treatment plant operators make important decisions regarding treatment processes to ensure safe and high quality municipal drinking water.

### Background

The source of water for the Tay Area Water Treatment Plant (TAWTP) intake is Hogg Bay of Severn Sound, Georgian Bay. This water treatment system serves approximately 8063 people and 141 non-residential users. The inlet to the drinking water system is at an elevation of 171.9 m above sea level and is approximately 100 m off shore, with the intake riser extending 1.23 m above the lakebed. The depth range for the intake opening based on the overall daily minimum and maximum water levels at the Midland gauge from 2015-2019 is 3.1-4.3 m. The area in the vicinity of the intake is relatively shallow, but has good circulation with particularly open exposure to predominating north-west winds.

The source of water for the Rope Subdivision Water Treatment Plant (RSWTP) intake is also from Severn Sound, immediately downstream of the main outlet of the Severn River. This water treatment system serves approximately 70 people. The inlet to the drinking water system is at an elevation of 174.1 m above sea level and is approximately 315 m off shore, with the intake riser extending 0.4 m above the lakebed. The depth range for the intake opening based on the overall daily minimum and maximum water levels at the Midland gauge from 2015-2019 is 1.7-2.9 m. The

navigational chart and engineering drawings show that depths in the vicinity are shallower than 2 m throughout most of the area. This and the relatively protected aspect of the area result in slow moving currents, aquatic plant growth and warm water temperatures. The operator of this treatment plant notes that bottom sediments are drawn in following storms (South Georgian Bay-Lake Simcoe Source Protection Committee, 2015).

### **Sampling Methods**

The Severn Sound Environmental Association (SSEA) monitors water quality at open water locations near both intakes (stations PM2, PM1 near the TAWTP and PS near the RSWTP), at the TAWTP (station PM6) (Figure 1). Data from these locations can be used to describe the raw water characteristics for both intakes.



Produced by the Severn Sound Environmental Association with Data supplied in part from the County of Simcoe, the Ontario Ministry of Natural Resources (© Queen's Printer 2015) and under License with Members of the Ontario Geospatial Data Exchange, 2015. Bathymetry for Georgian Bay generated from contour and depth data sourced from Geogratis (Natural Resource Canada) and the National Hydrographic Service of Canada

Figure 1. Tay water intakes and nearest SSEA water quality monitoring stations.

#### Intake Sampling

Raw water quality from the low lift station has been sampled by SSEA staff since 2011. Sampling occurs on a biweekly basis from May to early October to coincide with open water sampling, and on a monthly basis from November to April. Samples are collected as grab samples, and analyzed for general water chemistry, nutrients, chlorophyll *a* and heavy metals by Ministry of Environment Conservation and Parks (MECP) labs, and algae identification and biomass by independent taxonomists. Testing through the summer months for the taste and odour compounds geosmin and 2-methyl isoborneol (MIB), as well as the blue-green algae toxin microcystin, began in 2016. These analyses were carried out by SGS Ltd. Coinciding with sample collection, field measurements of water temperature, conductivity and pH are also recorded using a Hanna meter. SSEA does not sample the Rope Subdivision intake, however data is available at the nearby open water location PS.

In addition to sampling by SSEA, Township of Tay staff also conduct weekly monitoring and sample both intakes for the following: alkalinity, colour, hardness, temperature, total organic carbon, total suspended solids, turbidity, coliform, and *E. coli*. Geosmin, MIB, and microcystin were also sampled from 2017-2019. Quarterly sampling also includes a suite of heavy metals, pesticides and organic contaminants, which will not be discussed here.

#### **Open Waters – Hogg Bay and Severn River Mouth**

Two open water sites in Hogg Bay (PM1, started in 1997 and PM2, started in 1969) and one at the Severn River mouth (PS, started in 1999) are sampled on a biweekly basis from May to early October. Samples are collected as composites from surface down to twice the Secchi depth or 1m off bottom, whichever is less, which approximates the sunlit portion of the water column. Samples are analyzed for general water chemistry, nutrients, chlorophyll *a* and heavy metals by Ministry of Environment Conservation and Parks (MECP) labs, and algae identification and biomass by independent taxonomists. Note that metals and chlorophyll *a* are only analyzed for PM2 and PM6 samples. Coinciding with sample collection, field measurements of water clarity (Secchi depth), water temperature, conductivity and turbidity are also recorded using a Hanna meter.

For algae samples collected at PM2 and PM6, each individual sample was analyzed, while individual samples from PM1 and PS were pooled into a single annual composite sample. Thus, data from PM2 and PM6 can be used to examine seasonal patterns while data from PM1 and PS can be used to examine year to year changes.

#### Results

#### Temperature

The annual maximum recorded temperature as measured by municipal staff at the TAWTP from 2015- 2018 ranged from 20 to 24°C. These temperatures were slightly lower than those of the RSWTP raw water, likely due to the more sheltered location of the RSWTP intake. Between 2015-2018, temperatures ranged from 22 to 24°C at the RSWTP. 2019 data were not yet compiled at the time of writing.

Between 2015-2019, temperatures at PM2 at 3-4 m depth and PS at 2-3 m depth have been above the Ontario Drinking Water Standard (ODWS) drinking water aesthetic objective (AO) of 15°C 35% and 36% of the time, respectively (OMOE 2006). These values were obtained by standardizing the portion of the sampling season above the AO to the portion of the year the sampling season makes up.

Long term temperature analyses using Mann Kendall trend tests show that water temperatures across Severn Sound are increasing (Figure 2). At station PM2, the rate of increase in surface water temperature based on data going back to 1969 is 0.4°C per decade. Continued increases in water temperature are expected as regional air temperatures rise.



Figure 2. Long term temperature trends based on annual mean temperature at 1m below surface.

#### **General Chemistry**

Based on water samples from stations PM1, PM2, PM6 and PS, general water chemistry in the vicinity of the TAWTP and RSWTP intakes was typical of the open waters of Severn Sound (see Table 1). Alkalinity measurements indicated moderately hard water, and were within operational guidelines (OGs), as was pH. Colour was consistently above AOs. Sulphate and chloride both met AOs. While sodium concentrations met the AO, maximum concentrations at all locations exceeded 20 mg/L. The Township is required to report sodium levels exceeding 20 mg/L to the local Medical Officer of Health (MOH) so that this information may be passed on to local medical physicians who can advise individuals on sodium-restricted diets. Biweekly ice-free season turbidity data collected by SSEA does not show exceedances of the AO, however weekly year round data collected by the Township does show exceedances of this objective, indicating that high turbidity events are better captured by higher frequency monitoring. High turbidity events tended to happen during the winter months, and less often in spring and fall. These may increase as climate change results in less ice cover and more frequent storms.

| Variable<br>(units)       | Location | Minimum | Median | Maximum | Standard<br>Deviation | ODWS                  |
|---------------------------|----------|---------|--------|---------|-----------------------|-----------------------|
| Total Alkalinity          | PM1      | 63.5    | 76.3   | 86.3    | 4.9                   | 30-500 (OG)           |
| (mg/L CaCO <sub>3</sub> ) | PM2      | 49.3    | 74.4   | 79.7    | 6.1                   |                       |
|                           | PM6      | 56.0    | 75.5   | 94.2    | 7.5                   |                       |
|                           | PS       | 34.0    | 72.6   | 82.8    | 11.6                  |                       |
| Chloride                  | PM1      | 13.4    | 19.6   | 27.2    | 3.4                   | 250 (AO)              |
| (mg/L)                    | PM2      | 13.4    | 19.5   | 28.1    | 3.8                   |                       |
|                           | PM6      | 13.4    | 20.1   | 39.2    | 4.8                   |                       |
|                           | PS       | 10.5    | 31.4   | 40.7    | 8.9                   |                       |
| True Colour               | PM1      | 8.2     | 16.4   | 37.9    | 6.9                   | 5 (AO)                |
| (TCU)                     | PM2      | 7.5     | 15.5   | 46.6    | 8.0                   |                       |
|                           | PM6      | 4.8     | 16.8   | 52.9    | 10.7                  |                       |
|                           | PS       | 10.3    | 16.4   | 48.6    | 8.8                   |                       |
| рН                        | PM1      | 7.57    | 7.96   | 8.36    | 0.16                  | 6.5-8.5 (OG)          |
|                           | PM2      | 7.49    | 7.94   | 8.26    | 0.15                  |                       |
|                           | PM6      | 6.64    | 7.84   | 8.19    | 0.25                  |                       |
|                           | PS       | 7.46    | 7.93   | 8.43    | 0.24                  |                       |
| Sodium                    | PM1      | 0.70    | 11.90  | 65.40   | 7.36                  | 200 (AO) <sup>a</sup> |
| (mg/L)                    | PM2      | 8.20    | 12.05  | 39.60   | 4.28                  | 20 (Med.              |
|                           | PM6      | 2.01    | 12.20  | 22.40   | 3.04                  | Officer               |
|                           | PS       | 5.27    | 18.05  | 26.20   | 5.14                  | notified)             |
| Sulphate                  | PM1      | 7.0     | 9.1    | 11.4    | 1.0                   | 500 (AO)              |
| (mg/L)                    | PM2      | 6.0     | 9.4    | 11.6    | 1.1                   |                       |
|                           | PM6      | 6.4     | 9.6    | 13.4    | 1.5                   |                       |
|                           | PS       | 4.9     | 10.7   | 12.8    | 2.2                   |                       |

Table 1. General chemistry variables sampled at or in the vicinity of the TAWTP and RSWTP from 2015-2019. Ontario Drinking Water Standards (ODWS) are shown, where applicable, as operational guidelines (OG) or aesthetic objectives (AO). Exceedances are shown in red boldface. Turbidity values from the Township's weekly sampling up to 2018 are also included.

| Variable<br>(units) | Location | Minimum | Median | Maximum | Standard<br>Deviation | ODWS                |
|---------------------|----------|---------|--------|---------|-----------------------|---------------------|
| Turbidity           | PM1      | 0.69    | 1.48   | 4.42    | 0.71                  | 5 (AO) <sup>b</sup> |
| (NTU)               | PM2      | 0.78    | 1.73   | 3.25    | 0.53                  |                     |
|                     | PS       | 0.44    | 1.15   | 1.58    | 0.31                  |                     |
|                     | TAWTP    | 0.13    | 0.76   | 27.70   | 2.28                  |                     |
|                     | RSWTP    | 0.18    | 1.37   | 28.40   | 2.37                  |                     |

<sup>a</sup> Although the ODWS guideline is 200mg/L, the Medical Officer of Health is notified if surface water to be used for drinking is above 20mg/L.

<sup>b</sup> To ensure sufficient disinfection and filtration, turbidity in filter effluent water should be less than 1 NTU.

In terms of long term trends, sodium and chloride levels across Severn Sound are steadily increasing at each location. This trend that has been observed across the province, and is likely linked to road salt usage. There was no trend in colour, and a slight decrease in pH at both Hogg Bay sites. There has also been a decrease in water clarity since the mid 90's at both Hogg Bay sites.

#### **Nutrient Chemistry**

Nutrients directly relevant to drinking water quality include nitrate, organic nitrogen and dissolved organic carbon (DOC) (Table 2). Between 2015-2019, nitrate+nitrite concentrations were well below the maximum acceptable concentration (MAC). Organic nitrogen (total Kjeldahl nitrogen minus ammonia) was consistently above the OG, and DOC was often above the AO near both intakes.

Table 2. Nutrients relevant for drinking water standards at or in the vicinity of the TAWTP and RSWTP from 2015-2019. Ontario Drinking Water Standards (ODWS) are shown, where applicable, as operational guidelines (OG), aesthetic objectives (AO), or maximum acceptable concentrations (MACs). Exceedances are shown in red boldface.

| Variable<br>(units) | Location | Minimum | Median | Maximum | Standard<br>Deviation | ODWS      |
|---------------------|----------|---------|--------|---------|-----------------------|-----------|
| Nitrate+nitrite     | PM1      | 0.001   | 0.010  | 0.254   | 0.057                 | 10 (MAC)  |
| (mg/L)              | PM2      | 0.001   | 0.014  | 0.160   | 0.043                 |           |
|                     | PM6      | 0.001   | 0.056  | 0.442   | 0.095                 |           |
|                     | PS       | 0.001   | 0.007  | 0.100   | 0.022                 |           |
| Organic nitrogen    | PM1      | 0.233   | 0.290  | 0.357   | 0.029                 | 0.15 (OG) |
| (mg/L)              | PM2      | 0.198   | 0.286  | 0.356   | 0.033                 |           |
|                     | PM6      | 0.181   | 0.283  | 0.375   | 0.041                 |           |
|                     | PS       | 0.242   | 0.340  | 0.401   | 0.032                 |           |
| DOC                 | PM1      | 3       | 4.6    | 6.7     | 0.7                   | 5 (AO)    |
| (mg/L)              | PM2      | 2.8     | 4.6    | 6.6     | 0.7                   |           |
|                     | PM6      | 0.5     | 4.5    | 8.2     | 1.1                   |           |
|                     | PS       | 3.9     | 5.1    | 6.4     | 0.5                   |           |

Severn Sound is considered a mesotrophic, or moderately enriched, water body. Following completion of the Severn Sound Remedial Action Plan (Sherman 2002) and substantial completion of actions to satisfy the phosphorus control strategy (accepted by the federal and provincial governments in 2003), the quality of the open water near both intakes has been meeting most of the RAP targets for trophic indicators. Since 2015, mean annual ice-free values of total phosphorus concentration (TP) have been less than 15  $\mu$ g/L. Chlorophyll *a* concentrations have been less than 5  $\mu$ g/L, however water clarity values at PM1 and PM2 have not met the target of 3 m. The clarity target has been met at station PS.

Over the long term, there has been a decrease in organic nitrogen at PM2 since 1969 and PS since 1992, and a decrease in DOC at PS since 2010.

#### **Heavy Metals**

Concentrations of trace metals that have associated ODWS showed no exceedances of MACs, and values were generally an order of magnitude or more below the MACs for waters near the TAWTP (Table 3). Maximum concentrations of aluminum and iron occasionally exceeded the ODWS, although median values are well below the standards. Metals were not analyzed for samples from station PS.

Table 3. Trace metal concentrations at or in the vicinity of the TAWTP from 2015-2019. Ontario Drinking Water Standards (ODWS) are shown, as operational guidelines (OG), aesthetic objectives (AO), maximum acceptable concentrations (MACs), or interim maximum acceptable concentrations (IMACs). Exceedances are shown in red boldface. SSEA collected ice-free season biweekly samples at PM2 and PM6 (TAWTP), and monthly samples at PM6 during the winter.

| Variable<br>(units) | Location | Minimum | Median | Maximum | ODWS        |
|---------------------|----------|---------|--------|---------|-------------|
| Aluminum            | PM2      | 4.4     | 15.75  | 82.3    | 100 (OG)    |
| (µg/L)              | PM6      | 4.8     | 14.95  | 192     |             |
| Antimony            | PM2      | 0*      | 0.1*   | 0.4     | 6 (IMAC)    |
| (µg/L)              | PM6      | 0*      | 0.1*   | 0.1*    |             |
| Arsenic             | PM2      | 0.2*    | 0.4    | 0.7     | 25 (IMAC)   |
| (µg/L)              | PM6      | 0.2*    | 0.4    | 0.6     |             |
| Barium              | PM2      | 18.2    | 21.75  | 27.3    | 1000 (MAC)  |
| (µg/L)              | PM6      | 19.4    | 22.75  | 28.7    |             |
| Boron               | PM2      | 8       | 12     | 16      | 5000 (IMAC) |
| (µg/L)              | PM6      | 8       | 12     | 16      |             |
| Cadmium             | PM2      | 0*      | 0*     | 0*      | 5 (MAC)     |
| (µg/L)              | PM6      | 0*      | 0*     | 0*      |             |
| Chromium            | PM2      | 0*      | 0.2*   | 0.9     | 50 (MAC)    |
| (µg/L)              | PM6      | 0*      | 0.2*   | 0.9     |             |
| Copper              | PM2      | 0*      | 0.65   | 29.9    | 1000 (AO)   |
| (µg/L)              | PM6      | 0.8     | 1      | 9.8     |             |
| Iron                | PM2      | 0*      | 30     | 180     | 300 (AO)    |
| (µg/L)              | PM6      | 20      | 60     | 440     |             |
| Lead                | PM2      | 0*      | 0.1*   | 0.3     | 10 (MAC)    |
| (µg/L)              | PM6      | 0*      | 0.1*   | 1.4     |             |
| Manganese           | PM2      | 2.9     | 11.3   | 30.2    | 50 (AO)     |

| (µg/L)   | PM6 | 1.1  | 8.9  | 38.9 |            |
|----------|-----|------|------|------|------------|
| Selenium | PM2 | 0*   | 0.1* | 0.5  | 10 (MAC)   |
| (µg/L)   | PM6 | 0*   | 0.1* | 0.5  |            |
| Uranium  | PM2 | 0.1* | 0.2* | 0.2* | 20 (MAC)   |
| (µg/L)   | PM6 | 0.1* | 0.2* | 0.3  |            |
| Zinc     | PM2 | 0.5* | 0.9  | 13.2 | 5000 (MAC) |
| (µg/L)   | PM6 | 1.0  | 2.0  | 15.4 | . ,        |

\* Less than or equal to the value of the uncertainty level for the analysis.

There have been no appreciable trends in the metals highlighted in the above table.

#### Bacteria

Weekly raw water *E. coli* data collected between 2015-2019 by municipal staff at the TAWTP and RSWTP showed that all raw water samples had densities less than 100 colony forming units (CFU)/100 mL on any given sampling day, and geometric annual mean *E. coli* of less than 1 (Table 4). For each year from 2015-2019, between 29-56% of samples at the TAWTP and 33-60% of samples at the RSWTP had densities greater than zero. Overall, the bacteria load, as determined by *E. coli* as an indicator, at both intakes is relatively low, and is similar at both intakes.

Table 4. *E. coli* densities in raw water at the TAWTP and RSWTP from 2015-19. Geomean calculations cannot include values of zero, so where *E. coli* densities were zero, a value of 0.001 was substituted. Also shown are annual maximum densities and the percentage of samples with densities greater than zero. n = number of samples taken, *E. coli* density units in CFU/100 ml.

| Plant | Year | Geomean <i>E. coli</i> | Maximum <i>E. coli</i> | % of<br>Samples >0 | n  |
|-------|------|------------------------|------------------------|--------------------|----|
| TAWTP | 2015 | 0.05                   | 71                     | 47                 | 53 |
|       | 2016 | 0.03                   | 96                     | 44                 | 52 |
|       | 2017 | 0.09                   | 20                     | 56                 | 52 |
|       | 2018 | 0.05                   | 46                     | 48                 | 50 |
|       | 2019 | 0.01                   | 7                      | 29                 | 48 |
| RSWTP | 2015 | 0.09                   | 24                     | 56                 | 52 |
|       | 2016 | 0.03                   | 31                     | 44                 | 52 |
|       | 2017 | 0.01                   | 20                     | 33                 | 52 |
|       | 2018 | 0.10                   | 9                      | 60                 | 43 |
|       | 2019 | 0.03                   | 20                     | 44                 | 45 |

#### **Nuisance Algae and Algal Compounds**

Algae are a natural and essential part of all lake ecosystems, and a balanced algal community includes species from a variety of groups. When triggered by conditions related to water temperature, wind and light conditions and nutrients, individual species can dominate the community and form a bloom. When blooms of algal species that produce taste and odour compounds or toxins like microcystin occur, this can have negative impacts on drinking water in terms of aesthetic quality and safety.

Data from 2012-2016 were used in this analysis since all algae samples were processed by the same taxonomist. Beginning in 2017, a different taxonomist was used, and work is ongoing to standardize the data so that it is comparable to the previous taxonomist. Overall, the total biovolume of algae (a measure of biomass in units of mm<sup>3</sup> of algal cell volume per m<sup>3</sup> of water) at PM1, PM2, PM6 and PS from 2012-2016 was considered low to moderate, depending on the time of year. Peaks in the total amount of algae occur in mid to late summer. In terms of composition, the community was generally well balanced, although data from PM2 and PM6 showed that certain groups dominated at different times of the year (Figure 3).

Open water samples were compared with samples collected at the TAWTP taken on the same date and approximately the same time. Generally, total biovolume of algae was higher in the open waters than from the intake. The maximum biovolume for individual samples between 2012-2016 at PM2 was 1,191 mm<sup>3</sup>/m<sup>3</sup> compared to 554 mm<sup>3</sup>/m<sup>3</sup> at PM6. On average, intake samples contain 41% less algae biomass compared to open water samples. This is likely due to the fact that open water samples are collected as composites from the entire sunlit portion of the water, compared to the intake which draws water from a lower depth and a narrow portion of the water column.



Figure 3. Seasonal algae biovolume by major algal classes from 2012-2016 for PM2 and PM6. Seasonal values were averaged over each biweekly period.

In the vicinity of the RSWTP, the maximum annual total biovolume was 323 mm<sup>3</sup>/m<sup>3</sup> at PS (pooled annual count) between 2012-2016 (Appendix D). Biovolume is less at this location compared to PM2, possibly due to increased water currents.

Algae taxa known to cause adverse taste and odours in drinking water were noted such as the diatoms *Stephanodiscus* and *Fragilaria*, the chrysophytes *Chrysosphaerella*, and *Dinobryon*, and the blue-green algae *Mirocystis and Dolichospermum (Anabaena)*. Relatively high biovolumes (>100 mm<sup>3</sup>/m<sup>3</sup>) of *Stephanodiscus*, *Dinobryon* and *Mirocystis* occurred in TAWTP intake samples. A sum of all taste and odour causing taxa from each sampling date from 2012-2016 showed a maximum of 528 mm<sup>3</sup>/m<sup>3</sup> and

292 mm<sup>3</sup>/m<sup>3</sup> or 79% and 94% of the total biovolume at PM2 and PM6, respectively. In terms of seasonality, peaks in taste and odour causing taxa can vary widely, and can occur during the winter months as seen in 2012 (Figure 4). More often, peaks anywhere from July to September, which corresponds to peaks seen in geosmin and MIB.



Figure 4. Biovolume of common taste and odour causing algae for PM2 and PM6 from 2012-2016.

Algae that have the potential to produce toxins were also noted, namely blue-green algae that produce microcystins including: *Aphanizomenon, Dolichospermum, Planktothrix, Pseudanabaena,* and *Microcystis* (Health Canada, 2018). Biovolume of these genera were generally low based on data from each sampling date from 2012-2016, but did collectively reach a maximum of 226 mm<sup>3</sup>/m<sup>3</sup> and 191 mm<sup>3</sup>/m<sup>3</sup> or 27% and 39% of the total biovolume at PM2 and PM6, respectively (Figure 5). Peaks in biovolume occurred anywhere from late July to early September, which corresponds to when microcystin concentrations were detectable.



Figure 5. Biovolume of common microcystin-producing blue-green algae, including *Aphanizomenon*, *Dolichospermum, Planktothrix, Pseudanabaena*, and *Microcystis* for PM2 and PM6 from 2012-2016.

Analysis of long term trends in algae biovolume using a Mann Kendall trend test shows that the amount of algae at PM1, PM2 and PS has increased since the mid 90's (Appendix E). The proportion of golden algae, which includes many taxa that can cause taste and odour issues, has increased at all locations, and the proportion of dinoflagellates which also includes taxa that can cause taste and odour issues, has increased at PM1 and PS. The proportion of blue-green algae has also increased at PM2, but not the other two stations. Changes in the algal community may have implications for the severity and nature of taste and odour events.

#### **Taste and Odour**

Many species of algae produce compounds that impart an objectionable taste or odour to drinking water. Two of these compounds are geosmin and MIB, which are detected as an earthy taste and odour, and are typically produced by blue-green algae and actinomycetes (Watson et al., 2000). While there are no specific ODWSs for these compounds, they are detectable by the average person at thresholds of 4 ng/L and 9 ng/L, respectively, and the ODWS states that "water provided for public consumption should have an inoffensive taste."

Results from 2016-2019 show that geosmin is often above 4 ng/L beginning in mid-June, and MIB is often above 9 ng/L beginning in mid-July at the TAWTP (Figure 6) and the RSWTP (Figure 7). Geosmin concentrations remain above the odour threshold longer than MIB, and persisted as late as November in 2019. It should be noted that in 2019, the Township undertook a study to investigate water treatment options for removing geosmin and MIB, the results of which are being considered for implementation.









Figure 6. Taste and odour concentrations at the TAWTP raw water intake from 2016-2019. The 2017-2019 graphs includes results from Township as well as SSEA sampling.





Figure 7. Taste and odour concentrations at the RSWTP raw water intake from 2017-2019 based on Township sampling.

#### **Microcystin**

Microcystins are a class of algal toxins produced by numerous species of blue-green algae. In high enough concentrations, they can have negative effects on human health. Fortunately, concentrations of total microcystin at both intakes were very low. At the TAWTP from 2016-2019, levels were generally below method detection limit (Figure 8). On occasions where concentrations were detectable, they did not exceeded 0.2  $\mu$ g/L. Throughout 2019 at the RSWTP, levels were below method detection limit. The ODWS is for a specific type of microcystin called microcystin-LR, and the standard is 1.5  $\mu$ g/L. Thus, all results for total microcystin at both intakes meet this standard.





Figure 8. Microcystin concentrations at the TAWTP raw water intake from 2016-2019. The 2017-2019 graphs includes results from municipal as well as SSEA sampling. All samples from the RSWTP had concentrations <0.1 µg/L, so a graph was not included.

#### Potential for Event-driven Fluctuations in Water Quality

Modelling of water current speed and direction in the vicinity of the TAWTP showed that currents could move along shore in either direction at the intake location but tend to move more strongly and persistently from the west-northwest (Hodgins 2009). The approved Severn Sound Assessment Report (SSAR) for the Severn Sound Source Protection Area defined an event-based Intake Protection Zone 3 (IPZ3) for the TAWTP intake (SGBLSSPC 2015, Figure 9), which shows that parts of Hogg Bay west of the intake have greater potential impact from a fuel spills perspective. It follows that an algae bloom within the same IPZ3 area could similarly affect the intake more quickly than from other parts of the bay. At the RSWTP, the currents are generally strongly directed downstream from the mouth of the Severn River at the intake. For both intakes, it is important to reiterate the value of spill contingency planning through documents such as the Township's QMS Operational Plan, due to water movement and vulnerability of the intakes due to their shallow depths.

Existing Significant Drinking Water Threats have been identified in the SSAR following a risk assessment and threat confirmation exercise for both intakes. Due to the locations of the intakes, severe turbidity episodes are unlikely. Both intakes are located near pleasure craft channels. The RSWTP intake is located downstream of the Port Severn Sewage Treatment Plant (STP) (District of Muskoka) and the bridge crossing the Severn River downstream of the dam at Lock 45 (Trent Severn Waterway) at the main outlet of the Severn River into Severn Sound. Dispersion and current modelling studies carried out at Port Severn (Gore and Storey, 1998) indicated that the RSWTP intake would not be significantly impacted by the Port Severn STP discharge.



Figure 9. Location of drinking water intakes in Tay Township, as well as intake protection zones 1-3 (South Georgian Bay-Lake Simcoe Source Protection Committee, 2015).

# Summary

Water quality characteristics were assessed for the Tay Area WTP (TAWTP) and Rope Subdivision WTP (RSWTP) over the period of 2015-2019 in support of the Township's drinking water license renewal at both treatment plants. In summary:

- At both intakes, Operational Guidelines (OGs) for alkalinity and pH were consistently met, however the OGs for organic nitrogen was consistently not met
- The Maximum Acceptable Concentration (MAC) for nitrate was consistently met at both intakes

- At both intakes, Aesthetic Objectives (AOs) for sodium, chloride and sulphate were consistently met, however AOs for temperature, colour, turbidity and dissolved organic carbon were often or consistently not met
- While the AO for sodium was met, values at both intakes often exceeded 20 mg/L, which necessitates the local Medical Officer of Health being notified
- Concentrations of all metals with Ontario Drinking Water Standards (ODWS) were low and consistently met MACs, with the exception of aluminum and iron which occasionally exceeded AOs at the TAWTP
- *E. coli* densities were generally low, and never exceeded 100 CFU/100 mL at either intake
- Algae biomass is low to moderate in the vicinity of both intakes depending on the time of year, with peaks in mid to late summer
- Nuisance algae taxa that cause taste and odour and produce microcystin toxins are present, however taxa producing microcystin are not in high abundance
- Taste and odour compounds were measurable at both intakes, often at levels that can be detected by the average person, and were highest in mid to late summer, coinciding with the highest seasonal algae biovolumes
- Total microcystin concentrations at both intakes were low, and met the ODWS
- Water quality data from the open water sites PM1, PM2 and PS were invaluable as indicators of general characteristics of the source waters for both water intakes, from which trends and current conditions were described

A summary of trends shows that for many water quality parameters, quality has improved since the last assessment period from 2010-2014 (Table 5). Those that have worsened include sodium and chloride at all sites, and sulphate at PS.

Table 5. Summary of medians over each period, 2010-2014 and 2015-2019 along with the direction of change using a 2-sample Wilcoxon test. Cells coloured in blue indicated beneficial change, while cells in red indicate unfavourable change in terms of ODWS. Uncoloured cells indicate no change or one that is neutral in impact. Note that *E. coli* results apply to the TAWTP (PM6) and RSWTP (listed under PS). DOC – dissolved organic carbon

| Parameter                                  | 2010-<br>2014 | PM1<br>2015-<br>2019 | Trend | 2010-<br>2014 | PM2<br>2015-<br>2019 | Trend | 2010-<br>2014 | PM6<br>2015-<br>2019 | Trend | 2010-<br>2014 | PS<br>2015-<br>2019 | Trend |
|--------------------------------------------|---------------|----------------------|-------|---------------|----------------------|-------|---------------|----------------------|-------|---------------|---------------------|-------|
| Alkalinity<br>mg/L<br>(CaCO <sub>3</sub> ) | 70.65         | 76.30                | inc   | 68.80         | 74.35                | inc   | 70.50         | 75.50                | inc   | 60.55         | 72.60               | inc   |
| Chloride<br>(mg/L)                         | 15.70         | 19.60                | inc   | 16.10         | 19.50                | inc   | 17.21         | 20.10                | inc   | 20.40         | 31.40               | inc   |
| Colour<br>(TCU)                            | 15.60         | 16.40                | no    | 14.20         | 15.45                | no    | 20.10         | 16.80                | no    | 21.00         | 16.40               | dec   |
| Sodium<br>(mg/L)                           | 10.15         | 11.90                | inc   | 10.40         | 12.05                | inc   | 11.70         | 12.20                | inc   | 14.20         | 18.05               | inc   |
| рН                                         | 8.06          | 7.96                 | dec   | 8.04          | 7.94                 | dec   | 7.91          | 7.84                 | dec   | 7.88          | 7.93                | no    |

|                                | 2010      | PM1       |       | 2010      | PM2       |       | 2010      | PM6       |       | 2010      | PS        |       |
|--------------------------------|-----------|-----------|-------|-----------|-----------|-------|-----------|-----------|-------|-----------|-----------|-------|
| Parameter                      | 2010-2014 | 2015-2019 | Trend |
| Sulphate<br>(mg/L)             | 9.75      | 9.08      | dec   | 10.10     | 9.40      | no    | 10.10     | 9.60      | no    | 8.60      | 10.65     | inc   |
| DOC<br>(mg/L)                  | 4.70      | 4.60      | no    | 4.70      | 4.60      | no    | 5.00      | 4.50      | dec   | 5.45      | 5.10      | dec   |
| Organic<br>Nitrogen<br>(µg/L)  | 298       | 290       | dec   | 286       | 286       | no    | 301       | 283       | dec   | 342       | 340       | no    |
| Secchi<br>depth<br>(m)         | 3.1       | 3.1       | no    | 2.8       | 3.0       | no    | n.a.      | n.a.      | n.a.  | 3.2       | 3.9       | inc   |
| Temp. 1m<br>off bottom<br>(°C) | 19.3      | 20.4      | no    | 17.3      | 18.9      | no    | 16.7      | 16.2      | no    | 20.0      | 20.3      | no    |
| <i>E. coli</i><br>CFU/100mL    | n.a.      | n.a.      | n.a.  | n.a.      | n.a.      | n.a.  | 2         | 0         | dec   | 1         | 0         | dec   |

### Recommendations

In order to continue supporting the Township and providing valuable information on raw water conditions for the TAWTP and RSWTP, SSEA recommends the following:

• Tay Township continue weekly raw water sampling at both intakes, and include geosmin and MIB sampling at least from May-October. Given the low values, routine microcystin sampling may not be necessary. Instead, it is recommended that:

a) sampling be conducted biweekly when microcystin tended to be detectable (July-September) OR

b) the Township and SSEA staff visually monitor the surface waters around both intakes for blue-green algae blooms, and test for total microcystin if blooms are suspected

- Township continue supporting SSEA-led raw water sampling at the TAWTP for general water chemistry, nutrients and algae
- Township continue supporting SSEA open water sampling in Hogg Bay (PM1, PM2) and Severn River mouth (PS) locations. Data from these stations are critical in being able to describe trends, current conditions, and predict future water quality conditions that will influence both drinking water intakes
- Maintain communications on both sampling programs to ensure no overlap in sample analysis, and continued data sharing
- Continue to ensure that spill contingency plans are in place and up-to-date, and are reviewed regularly

#### References

Health Canada. 2018. Guidelines for Canadian Drinking Water Quality: Guideline Technical Document – Cyanobacterial Toxins. Accessed Apr 2020: <u>www.canada.ca/en/health-canada/services/publications/healthy-living/guidelines-</u> <u>canadian-drinking-water-quality-guideline-technical-document-cyanobacterial-toxins-</u> <u>document.html</u>

Gore and Storey. 1998. Muskoka Port Severn Sewage Treatment Plant Environmental Assessment. Technical Report.

Hodgins, D.B. 2009. Hydrodynamic Modelling To Delineate Intake Protection Zones in Georgian Bay, Severn Sound and Little Lake. SNC-Lavalin Report prepared for the Lake Simcoe Region Conservation Authority.

Ontario Ministry of Environment (OMOE). 1994. Provincial Water Quality Objectives. PIBS 3303E. Queen's Printer for Ontario.

Ontario Ministry of Environment (OMOE). 2006. Technical Support Document for Ontario Drinking Water Standards, Objectives and Guidelines. PIBS 4449e01. Queen's Printer for Ontario.

Sherman, R.K. 2002. Severn Sound Remedial Action Plan Stage 3 Report: The status of restoration and delisting of Severn Sound as an Area of Concern. Environment Canada-Ontario Ministry of the Environment Report.

South Georgian Bay-Lake Simcoe Source Protection Committee (SGBLSSPC). 2015. Approved Assessment Report: Severn Sound Source Protection Area.

Watson, S., Brownlee, B., Satchwill T., Hargesheimer, E. 2000. Water Research (34) 2818-2828.

### Appendix A – Recent water quality summary statistics, 2015-2019

| Station | Year | Statistic | Total<br>Alkalinity<br>mg/L<br>CaCO <sub>3</sub> | Gran<br>Alkalinity<br>mg/L<br>CaCO <sub>3</sub> | Conductivity<br>µS/cm | рН   | Silicate<br>mg/L | Calcium<br>mg/L | Chloride<br>mg/L | Potassium<br>mg/L | Magnesium<br>mg/L | Sodium<br>mg/L | Sulphate<br>mg/L |
|---------|------|-----------|--------------------------------------------------|-------------------------------------------------|-----------------------|------|------------------|-----------------|------------------|-------------------|-------------------|----------------|------------------|
| PM1     | 2015 | Min       | 69.6                                             | 67.8                                            | 198                   | 7.87 | 1.38             | 21.8            | 13.4             | 0.93              | 4.77              | 8.45           | 7.5              |
| PM1     | 2015 | Median    | 78.6                                             | 76.9                                            | 218                   | 8.02 | 1.63             | 24.6            | 16.4             | 1.06              | 5.50              | 10.25          | 8.6              |
| PM1     | 2015 | Max       | 82.3                                             | 80.7                                            | 238                   | 8.22 | 2.00             | 27.5            | 19.6             | 1.30              | 6.06              | 12.10          | 10.4             |
| PM1     | 2015 | StDev     | 3.9                                              | 4.2                                             | 12                    | 0.13 | 0.19             | 1.7             | 1.7              | 0.12              | 0.39              | 1.08           | 0.9              |
| PM1     | 2016 | Min       | 63.5                                             | 61.9                                            | 192                   | 7.57 | 0.74             | 21.5            | 15.2             | 0.88              | 4.39              | 9.43           | 7.0              |
| PM1     | 2016 | Median    | 69.4                                             | 67.9                                            | 213                   | 7.90 | 1.20             | 23.2            | 17.1             | 1.02              | 5.08              | 10.65          | 8.2              |
| PM1     | 2016 | Max       | 70.6                                             | 68.9                                            | 224                   | 8.31 | 1.52             | 23.9            | 18.9             | 1.17              | 5.82              | 12.50          | 9.6              |
| PM1     | 2016 | StDev     | 2.0                                              | 2.0                                             | 8                     | 0.20 | 0.27             | 0.8             | 1.1              | 0.10              | 0.41              | 0.85           | 0.7              |
| PM1     | 2017 | Min       | 66.0                                             | 64.6                                            | 211                   | 7.85 | 1.00             | 23.2            | 16.7             | 0.06              | 0.29              | 0.70           | 7.7              |
| PM1     | 2017 | Median    | 78.0                                             | 76.5                                            | 251                   | 7.94 | 1.40             | 27.0            | 23.3             | 1.27              | 5.80              | 14.00          | 9.5              |
| PM1     | 2017 | Max       | 82.5                                             | 81.5                                            | 264                   | 8.23 | 2.04             | 83.4            | 26.4             | 4.70              | 16.40             | 65.40          | 10.4             |
| PM1     | 2017 | StDev     | 5.0                                              | 5.0                                             | 19                    | 0.11 | 0.30             | 16.5            | 3.3              | 1.09              | 3.65              | 15.86          | 0.9              |
| PM1     | 2018 | Min       | 71.3                                             | 69.6                                            | 230                   | 7.74 | 1.20             | 24.2            | 19.5             | 1.07              | 5.11              | 11.00          | 8.2              |
| PM1     | 2018 | Median    | 76.4                                             | 74.7                                            | 235                   | 7.84 | 1.55             | 26.5            | 20.7             | 1.24              | 5.98              | 12.65          | 9.7              |
| PM1     | 2018 | Max       | 86.3                                             | 85.4                                            | 257                   | 8.36 | 1.84             | 29.6            | 24.7             | 1.34              | 6.63              | 15.30          | 11.4             |
| PM1     | 2018 | StDev     | 4.2                                              | 4.4                                             | 9                     | 0.20 | 0.21             | 1.4             | 1.4              | 0.09              | 0.48              | 1.07           | 1.0              |
| PM1     | 2019 | Min       | 67.2                                             | 65.8                                            | 209                   | 7.86 | 0.72             | 24.0            | 18.0             | 1.11              | 4.57              | 9.30           | 7.3              |
| PM1     | 2019 | Median    | 77.5                                             | 76.0                                            | 247                   | 8.02 | 1.12             | 26.1            | 23.3             | 1.21              | 5.72              | 13.75          | 9.2              |
| PM1     | 2019 | Max       | 80.2                                             | 79.0                                            | 266                   | 8.26 | 1.84             | 27.5            | 27.2             | 1.31              | 6.08              | 16.70          | 10.0             |
| PM1     | 2019 | StDev     | 3.9                                              | 4.0                                             | 17                    | 0.11 | 0.35             | 1.0             | 3.0              | 0.06              | 0.48              | 2.20           | 0.9              |
| PM2     | 2015 | Min       | 67.8                                             | 66.0                                            | 193                   | 7.85 | 1.32             | 21.4            | 13.4             | 0.93              | 4.64              | 8.20           | 7.8              |
| PM2     | 2015 | Median    | 75.3                                             | 73.3                                            | 212                   | 8.00 | 1.58             | 24.4            | 16.0             | 1.04              | 5.29              | 9.91           | 8.7              |
| PM2     | 2015 | Max       | 79.7                                             | 78.2                                            | 230                   | 8.11 | 1.96             | 27.2            | 19.2             | 1.22              | 6.05              | 12.50          | 10.4             |
| PM2     | 2015 | StDev     | 4.1                                              | 4.2                                             | 12                    | 0.09 | 0.17             | 1.5             | 1.6              | 0.09              | 0.38              | 1.17           | 0.9              |
| PM2     | 2016 | Min       | 57.9                                             | 57.0                                            | 187                   | 7.49 | 0.64             | 19.4            | 15.4             | 0.92              | 3.91              | 9.51           | 7.5              |
| PM2     | 2016 | Median    | 68.4                                             | 66.8                                            | 211                   | 7.88 | 1.18             | 22.9            | 16.8             | 1.02              | 5.11              | 10.65          | 8.5              |
| PM2     | 2016 | Max       | 74.4                                             | 72.7                                            | 241                   | 8.09 | 1.48             | 25.7            | 21.2             | 1.18              | 5.87              | 13.70          | 9.7              |
| PM2     | 2016 | StDev     | 4.1                                              | 3.9                                             | 13                    | 0.16 | 0.29             | 1.5             | 1.7              | 0.09              | 0.54              | 1.14           | 0.6              |
| PM2     | 2017 | Min       | 63.3                                             | 62.2                                            | 196                   | 7.77 | 0.92             | 21.4            | 15.6             | 0.99              | 4.21              | 10.20          | 7.6              |

Severn Sound Environmental Association – Raw Water Assessment

|         |      |           | Total      | Gran       |              |      |          |         |          |           |           |        |          |
|---------|------|-----------|------------|------------|--------------|------|----------|---------|----------|-----------|-----------|--------|----------|
| Station | Year | Statistic | Alkalinity | Alkalinity | Conductivity | рΗ   | Silicate | Calcium | Chloride | Potassium | Magnesium | Sodium | Sulphate |
|         |      |           | mg/L       | mg/L       | µS/cm        |      | mg/L     | mg/L    | mg/L     | mg/L      | mg/L      | mg/L   | mg/L     |
|         |      |           | CaCO₃      | CaCO₃      |              |      |          |         |          |           |           |        |          |
| PM2     | 2017 | Median    | 75.3       | 74.0       | 249          | 7.95 | 1.30     | 26.8    | 23.9     | 1.32      | 5.81      | 14.30  | 10.1     |
| PM2     | 2017 | Max       | 79.2       | 78.1       | 269          | 8.09 | 1.76     | 76.2    | 28.1     | 3.02      | 10.80     | 39.60  | 10.8     |
| PM2     | 2017 | StDev     | 6.1        | 6.1        | 25           | 0.09 | 0.24     | 14.9    | 3.6      | 0.54      | 1.73      | 7.68   | 1.1      |
| PM2     | 2018 | Min       | 71.0       | 69.4       | 223          | 7.67 | 1.24     | 24.3    | 17.7     | 1.06      | 5.04      | 10.20  | 8.6      |
| PM2     | 2018 | Median    | 76.3       | 74.9       | 235          | 7.82 | 1.44     | 26.8    | 20.9     | 1.24      | 5.76      | 12.65  | 10.0     |
| PM2     | 2018 | Max       | 78.8       | 76.6       | 264          | 8.26 | 1.76     | 28.5    | 26.2     | 1.35      | 6.62      | 16.60  | 11.6     |
| PM2     | 2018 | StDev     | 2.6        | 2.6        | 12           | 0.18 | 0.19     | 1.5     | 2.8      | 0.09      | 0.50      | 1.81   | 1.0      |
| PM2     | 2019 | Min       | 49.3       | 48.0       | 159          | 7.68 | 0.70     | 17.3    | 14.7     | 0.95      | 3.29      | 8.39   | 6.0      |
| PM2     | 2019 | Median    | 75.3       | 73.8       | 240          | 8.02 | 0.98     | 25.5    | 21.6     | 1.20      | 5.52      | 13.05  | 9.5      |
| PM2     | 2019 | Max       | 77.0       | 75.7       | 261          | 8.15 | 1.76     | 26.8    | 26.8     | 1.31      | 6.04      | 16.70  | 10.5     |
| PM2     | 2019 | StDev     | 9.2        | 9.2        | 31           | 0.14 | 0.32     | 3.3     | 3.7      | 0.12      | 0.92      | 2.56   | 1.4      |
| PM6     | 2015 | Min       | 67.3       | 65.5       | 200          | 7.69 | 1.32     | 22.1    | 13.4     | 0.98      | 4.96      | 8.41   | 7.3      |
| PM6     | 2015 | Median    | 75.0       | 73.8       | 213          | 7.97 | 1.60     | 24.4    | 16.9     | 1.07      | 5.25      | 10.35  | 8.5      |
| PM6     | 2015 | Max       | 80.2       | 79.6       | 230          | 8.13 | 1.92     | 26.5    | 19.0     | 1.20      | 6.09      | 11.70  | 10.5     |
| PM6     | 2015 | StDev     | 4.0        | 4.2        | 10           | 0.12 | 0.16     | 1.4     | 1.7      | 0.09      | 0.35      | 1.11   | 0.9      |
| PM6     | 2016 | Min       | 56.5       | 55.3       | 188          | 7.49 | 0.56     | 20.3    | 15.7     | 0.87      | 3.99      | 10.10  | 7.5      |
| PM6     | 2016 | Median    | 69.2       | 67.3       | 217          | 7.84 | 1.19     | 23.8    | 17.9     | 1.01      | 5.28      | 11.40  | 8.7      |
| PM6     | 2016 | Max       | 75.0       | 73.5       | 240          | 8.16 | 1.40     | 25.7    | 21.3     | 1.22      | 6.00      | 13.40  | 9.6      |
| PM6     | 2016 | StDev     | 4.7        | 4.6        | 13           | 0.20 | 0.28     | 1.7     | 1.9      | 0.10      | 0.56      | 1.16   | 0.6      |
| PM6     | 2017 | Min       | 58.7       | 56.8       | 190          | 7.82 | 1.00     | 20.0    | 15.7     | 0.97      | 3.92      | 8.25   | 7.5      |
| PM6     | 2017 | Median    | 76.0       | 74.5       | 254          | 7.90 | 1.25     | 26.9    | 24.3     | 1.31      | 5.73      | 14.45  | 10.1     |
| PM6     | 2017 | Max       | 80.5       | 79.6       | 269          | 8.19 | 1.76     | 62.2    | 27.7     | 1.77      | 15.20     | 17.50  | 10.9     |
| PM6     | 2017 | StDev     | 6.8        | 7.1        | 26           | 0.11 | 0.20     | 10.9    | 4.0      | 0.22      | 2.95      | 3.10   | 1.2      |
| PM6     | 2018 | Min       | 72.3       | 70.7       | 231          | 7.53 | 1.20     | 24.5    | 18.0     | 1.13      | 5.15      | 9.85   | 8.7      |
| PM6     | 2018 | Median    | 76.4       | 74.8       | 239          | 7.83 | 1.44     | 26.9    | 22.5     | 1.24      | 6.05      | 13.45  | 9.9      |
| PM6     | 2018 | Max       | 79.3       | 77.8       | 267          | 8.19 | 1.74     | 29.0    | 26.9     | 1.38      | 6.65      | 17.70  | 11.3     |
| PM6     | 2018 | StDev     | 2.4        | 2.4        | 12           | 0.18 | 0.19     | 1.3     | 2.8      | 0.08      | 0.48      | 2.13   | 0.9      |
| PM6     | 2019 | Min       | 57.8       | 56.6       | 182          | 7.75 | 0.52     | 20.3    | 15.8     | 0.98      | 3.88      | 9.23   | 6.4      |
| PM6     | 2019 | Median    | 75.2       | 74.2       | 247          | 7.98 | 0.98     | 25.9    | 23.0     | 1.19      | 5.47      | 14.15  | 9.5      |
| PM6     | 2019 | Max       | 80.2       | 79.3       | 275          | 8.18 | 1.82     | 28.1    | 29.3     | 1.36      | 5.98      | 17.50  | 9.9      |
| PM6     | 2019 | StDev     | 9.1        | 9.2        | 33           | 0.13 | 0.39     | 2.7     | 4.8      | 0.11      | 0.72      | 2.76   | 1.4      |
| PS      | 2015 | Min       | 43.5       | 42.2       | 138          | 7.50 | 1.30     | 13.4    | 10.5     | 0.80      | 2.57      | 7.06   | 4.9      |
| PS      | 2015 | Median    | 62.7       | 60.8       | 213          | 7.88 | 1.52     | 20.8    | 21.8     | 1.09      | 4.39      | 12.88  | 8.0      |
| PS      | 2015 | Max       | 82.8       | 81.5       | 304          | 8.22 | 1.80     | 29.0    | 38.8     | 1.65      | 6.50      | 22.30  | 12.7     |

Severn Sound Environmental Association – Raw Water Assessment

|         |      |           | Total             | Gran       |              |      |          |         |          |           |           |        |          |
|---------|------|-----------|-------------------|------------|--------------|------|----------|---------|----------|-----------|-----------|--------|----------|
| Station | Year | Statistic | Alkalinity        | Alkalinity | Conductivity | рΗ   | Silicate | Calcium | Chloride | Potassium | Magnesium | Sodium | Sulphate |
|         |      |           | mg/L              | mg/L       | µS/cm        |      | mg/L     | mg/L    | mg/L     | mg/L      | mg/L      | mg/L   | mg/L     |
|         |      |           | CaCO <sub>3</sub> | $CaCO_3$   |              |      |          |         |          |           |           |        |          |
| PS      | 2015 | StDev     | 16.2              | 16.0       | 75           | 0.25 | 0.14     | 6.0     | 12.8     | 0.34      | 1.65      | 6.73   | 3.5      |
| PS      | 2016 | Min       | 58.2              | 56.6       | 207          | 7.46 | 0.52     | 21.3    | 20.5     | 1.15      | 4.14      | 12.30  | 8.6      |
| PS      | 2016 | Median    | 70.8              | 69.4       | 261          | 7.94 | 0.81     | 24.9    | 27.6     | 1.27      | 5.32      | 16.60  | 9.9      |
| PS      | 2016 | Max       | 74.2              | 72.2       | 270          | 8.26 | 1.28     | 27.7    | 32.0     | 1.44      | 6.00      | 20.40  | 11.1     |
| PS      | 2016 | StDev     | 4.1               | 4.0        | 17           | 0.27 | 0.23     | 1.6     | 3.2      | 0.09      | 0.55      | 2.30   | 0.7      |
| PS      | 2017 | Min       | 43.9              | 43.0       | 157          | 7.62 | 0.60     | 6.7     | 15.5     | 0.07      | 0.21      | 5.27   | 6.7      |
| PS      | 2017 | Median    | 71.8              | 70.9       | 271          | 7.83 | 1.34     | 24.7    | 31.7     | 1.32      | 5.17      | 16.80  | 11.2     |
| PS      | 2017 | Max       | 79.1              | 77.2       | 321          | 8.12 | 1.70     | 30.1    | 39.3     | 1.86      | 6.62      | 26.20  | 12.8     |
| PS      | 2017 | StDev     | 11.6              | 11.5       | 52           | 0.16 | 0.35     | 6.6     | 7.7      | 0.48      | 1.89      | 5.93   | 1.9      |
| PS      | 2018 | Min       | 60.2              | 59.0       | 214          | 7.48 | 0.92     | 21.7    | 23.5     | 1.21      | 4.33      | 13.10  | 8.3      |
| PS      | 2018 | Median    | 78.6              | 77.0       | 295          | 7.92 | 1.62     | 28.4    | 35.2     | 1.57      | 6.01      | 19.10  | 11.0     |
| PS      | 2018 | Max       | 81.0              | 79.3       | 317          | 8.32 | 1.88     | 31.5    | 40.7     | 1.76      | 6.60      | 24.50  | 12.8     |
| PS      | 2018 | StDev     | 7.3               | 7.2        | 36           | 0.27 | 0.31     | 3.1     | 6.1      | 0.17      | 0.78      | 3.64   | 1.6      |
| PS      | 2019 | Min       | 34.0              | 32.4       | 122          | 7.50 | 0.40     | 12.7    | 12.4     | 0.80      | 2.40      | 7.00   | 5.1      |
| PS      | 2019 | Median    | 75.1              | 73.4       | 301          | 8.02 | 0.81     | 26.4    | 37.9     | 1.42      | 6.13      | 20.30  | 11.3     |
| PS      | 2019 | Max       | 79.2              | 77.9       | 307          | 8.43 | 1.68     | 28.0    | 40.3     | 1.72      | 6.46      | 23.60  | 12.0     |
| PS      | 2019 | StDev     | 13.4              | 13.4       | 57           | 0.24 | 0.36     | 4.4     | 9.1      | 0.25      | 1.26      | 4.87   | 2.1      |

|         |      |           |             | Dissolved | Dissolved |          |          | Total    |          |            |        |           |        |
|---------|------|-----------|-------------|-----------|-----------|----------|----------|----------|----------|------------|--------|-----------|--------|
|         |      |           | Chlorophyll | Inorganic | Organic   | Ammonia+ | Nitrate+ | Kjeldahl | Organic  | Total      | Secchi |           |        |
| Station | Year | Statistic | а           | Carbon    | Carbon    | Ammonium | Nitrite  | Nitrogen | Nitrogen | Phosphorus | Depth  | Turbidity | Colour |
|         |      |           | µg/L        | mg/L      | mg/L      | µg/L     | µg/L     | µg/L     | µg/L     | µg/L       | m      | NTU       | TCU    |
| PM1     | 2015 | Min       |             | 15.2      | 4.2       | 6        | 2        | 257      | 243      | 8.7        | 3.1    |           | 9.8    |
| PM1     | 2015 | Median    |             | 17.4      | 4.9       | 16       | 18       | 298      | 276      | 12.8       | 3.5    |           | 15.8   |
| PM1     | 2015 | Max       |             | 19.8      | 5.2       | 46       | 156      | 348      | 332      | 17.3       | 4.0    |           | 27.0   |
| PM1     | 2015 | StDev     |             | 1.4       | 0.3       | 12       | 53       | 28       | 27       | 2.7        | 0.3    |           | 4.9    |
| PM1     | 2016 | Min       |             | 15.1      | 3.5       | 6        | 2        | 275      | 257      | 8.6        | 2.1    | 1.1       | 9.1    |
| PM1     | 2016 | Median    |             | 15.9      | 4.6       | 20       | 4        | 316      | 294      | 12.8       | 3.1    | 1.4       | 14.8   |
| PM1     | 2016 | Max       |             | 17.3      | 6.7       | 32       | 92       | 357      | 339      | 17.3       | 3.9    | 2.5       | 27.5   |
| PM1     | 2016 | StDev     |             | 0.7       | 1.0       | 7        | 29       | 26       | 26       | 2.4        | 0.6    | 0.5       | 5.8    |
| PM1     | 2017 | Min       |             | 15.0      | 3.9       | 24       | 1        | 273      | 241      | 10.3       | 1.5    | 1.0       | 11.2   |
| PM1     | 2017 | Median    |             | 17.7      | 4.8       | 35       | 8        | 342      | 310      | 13.5       | 2.7    | 1.6       | 21.6   |
| PM1     | 2017 | Max       |             | 19.0      | 5.5       | 66       | 254      | 405      | 357      | 28.1       | 4.5    | 2.6       | 37.9   |
| PM1     | 2017 | StDev     |             | 1.3       | 0.5       | 13       | 80       | 43       | 36       | 5.5        | 0.8    | 0.5       | 7.7    |
| PM1     | 2018 | Min       |             | 15.3      | 3.0       | 8        | 4        | 265      | 233      | 8.4        | 1.5    | 0.7       | 8.2    |
| PM1     | 2018 | Median    |             | 17.1      | 3.9       | 32       | 18       | 320      | 286      | 11.9       | 3.0    | 1.3       | 13.8   |
| PM1     | 2018 | Max       |             | 21.2      | 4.6       | 52       | 168      | 348      | 316      | 15.0       | 3.9    | 4.4       | 28.0   |
| PM1     | 2018 | StDev     |             | 1.4       | 0.5       | 11       | 50       | 29       | 26       | 2.2        | 0.7    | 1.1       | 6.1    |
| PM1     | 2019 | Min       |             | 14.8      | 3.8       | 14       | 4        | 283      | 239      | 11.0       | 1.9    | 0.7       | 11.2   |
| PM1     | 2019 | Median    |             | 18.0      | 4.7       | 29       | 11       | 305      | 280      | 13.0       | 2.9    | 1.9       | 15.8   |
| PM1     | 2019 | Max       |             | 20.3      | 5.0       | 46       | 174      | 359      | 313      | 16.5       | 5.0    | 3.0       | 34.4   |
| PM1     | 2019 | StDev     |             | 1.6       | 0.4       | 11       | 61       | 24       | 23       | 1.9        | 0.8    | 0.7       | 8.0    |
| PM2     | 2015 | Min       |             | 15.1      | 4.2       | 4        | 2        | 260      | 246      | 8.1        | 2.4    |           | 8.9    |
| PM2     | 2015 | Median    |             | 16.5      | 4.7       | 16       | 27       | 294      | 265      | 10.3       | 3.0    |           | 16.3   |
| PM2     | 2015 | Max       |             | 19.2      | 5.1       | 42       | 160      | 313      | 295      | 15.2       | 4.3    |           | 26.8   |
| PM2     | 2015 | StDev     |             | 1.2       | 0.3       | 11       | 59       | 17       | 20       | 2.6        | 0.6    |           | 4.9    |
| PM2     | 2016 | Min       |             | 13.6      | 3.2       | 8        | 2        | 264      | 245      | 7.6        | 2.8    | 0.8       | 8.9    |
| PM2     | 2016 | Median    |             | 15.7      | 4.4       | 19       | 3        | 309      | 292      | 12.5       | 3.2    | 1.6       | 14.0   |
| PM2     | 2016 | Max       |             | 17.6      | 6.6       | 32       | 60       | 365      | 349      | 16.7       | 4.0    | 2.1       | 27.3   |
| PM2     | 2016 | StDev     |             | 1.0       | 1.0       | 8        | 22       | 33       | 33       | 2.7        | 0.4    | 0.4       | 5.6    |
| PM2     | 2017 | Min       | 0.2         | 12.8      | 3.8       | 18       | 1        | 260      | 238      | 8.2        | 2.0    | 1.2       | 11.1   |
| PM2     | 2017 | Median    | 1.1         | 17.3      | 5.0       | 31       | 21       | 340      | 316      | 12.5       | 2.6    | 1.7       | 22.2   |
| PM2     | 2017 | Max       | 2.3         | 19.2      | 5.9       | 52       | 126      | 396      | 356      | 13.7       | 4.8    | 2.3       | 37.4   |
| PM2     | 2017 | StDev     | 0.6         | 2.0       | 0.6       | 10       | 43       | 40       | 34       | 1.8        | 0.8    | 0.3       | 8.2    |
| PM2     | 2018 | Min       | 0.9         | 16.0      | 2.8       | 10       | 2        | 240      | 198      | 8.6        | 1.9    | 0.9       | 7.5    |

Severn Sound Environmental Association – Raw Water Assessment

|          |      |                 |                    | Dissolved    | Dissolved            |                   |                   | Total              |                    |                     |            |           |             |
|----------|------|-----------------|--------------------|--------------|----------------------|-------------------|-------------------|--------------------|--------------------|---------------------|------------|-----------|-------------|
|          |      |                 | Chlorophyll        | Inorganic    | Organic              | Ammonia+          | Nitrate+          | Kjeldahl           | Organic            | Total               | Secchi     |           |             |
| Station  | Year | Statistic       | a<br>ug/l          | Carbon       | Carbon               | Ammonium          | Nitrite           | Nitrogen           | Nitrogen           | Phosphorus          | Depth      | Turbidity | Colour      |
| PM2      | 2018 | Median          | <u>µg/∟</u><br>1 1 | <br>17.1     | <u>1119/⊏</u><br>3.0 | <u>µg/∟</u><br>34 | <u>µg/∟</u><br>46 | <u>µy/∟</u><br>314 | <u>µy/∟</u><br>278 | <u>µg/∟</u><br>12.7 | 26         | 16        | 12.2        |
| PM2      | 2018 | Max             | 4.0                | 17.1         | 4 7                  | 52                | 134               | 346                | 316                | 17.8                | 3.8        | 3.3       | 30.4        |
| PM2      | 2018 | StDev           | 0.9                | 0.5          | 0.6                  | 11                | 40                | 37                 | 36                 | 2.7                 | 0.7        | 0.7       | 6.8         |
| PM2      | 2019 | Min             | 0.3                | 11.0         | 3.6                  | 12                | 2                 | 268                | 232                | 8.8                 | 1.5        | 1.3       | 10.1        |
| PM2      | 2019 | Median          | 0.9                | 17.4         | 4.7                  | 30                | 16                | 290                | 266                | 11.3                | 2.9        | 1.9       | 15.7        |
| PM2      | 2019 | Max             | 2.4                | 20.1         | 5.6                  | 44                | 124               | 336                | 294                | 13.3                | 3.9        | 3.0       | 46.6        |
| PM2      | 2019 | StDev           | 0.8                | 2.7          | 0.6                  | 10                | 42                | 22                 | 22                 | 1.7                 | 0.6        | 0.5       | 11.2        |
| PM6      | 2015 | Min             |                    | 15.5         | 4.2                  | 12                | 2                 | 263                | 229                | 7.6                 |            |           | 11.5        |
| PM6      | 2015 | Median          |                    | 16.6         | 4.6                  | 22                | 42                | 287                | 267                | 11.5                |            |           | 15.2        |
| PM6      | 2015 | Max             |                    | 19.4         | 5.5                  | 58                | 160               | 366                | 308                | 15.3                |            |           | 24.6        |
| PM6      | 2015 | StDev           |                    | 1.1          | 0.4                  | 13                | 59                | 32                 | 28                 | 2.7                 |            |           | 3.9         |
| PM6      | 2016 | Min             |                    | 13.6         | 3.5                  | 6                 | 2                 | 264                | 258                | 8.4                 |            |           | 10.3        |
| PM6      | 2016 | Median          |                    | 15.8         | 4.6                  | 18                | 4                 | 328                | 303                | 13.0                |            |           | 15.7        |
| PM6      | 2016 | Max             |                    | 17.7         | 6.6                  | 36                | 58                | 372                | 362                | 15.2                |            |           | 29.9        |
| PM6      | 2016 | StDev           |                    | 1.0          | 1.1                  | 8                 | 18                | 32                 | 31                 | 2.2                 |            |           | 5.4         |
| PM6      | 2017 | Min             |                    | 13.7         | 4.1                  | 18                | 1                 | 258                | 234                | 6.9                 |            |           | 11.6        |
| PM6      | 2017 | Median          |                    | 16.8         | 5.1                  | 31                | 26                | 337                | 315                | 11.6                |            |           | 22.4        |
| PM6      | 2017 | Max             |                    | 20.5         | 5.6                  | 60                | 126               | 406                | 368                | 14.3                |            |           | 37.4        |
| PM6      | 2017 | StDev           |                    | 1.9          | 0.5                  | 11                | 45                | 43                 | 38                 | 2.1                 |            |           | 7.8         |
| PM6      | 2018 | Min             |                    | 16.2         | 2.8                  | 8                 | 4                 | 231                | 203                | 8.7                 |            |           | 6.1         |
| PM6      | 2018 | Median          |                    | 17.1         | 3.9                  | 30                | 39                | 324                | 284                | 12.2                |            |           | 13.2        |
| PM6      | 2018 | Max             |                    | 18.1         | 4.6                  | 54                | 114               | 363                | 328                | 16.9                |            |           | 22.4        |
| PM6      | 2018 | StDev           |                    | 0.5          | 0.6                  | 12                | 35                | 40                 | 30                 | 2.6                 |            |           | 5.1         |
| PM6      | 2019 | Min             | 0.4                | 13.0         | 3.5                  | 18                | 2                 | 271                | 237                | 7.6                 |            |           | 12.8        |
| PIVI6    | 2019 | Median          | 0.6                | 17.7         | 4.9                  | 29                | 19                | 305                | 200                | 12.2                |            |           | 16.9        |
| PIVIO    | 2019 | Nax             | 1.3                | 20.4         | 8.2                  | 40                | 146               | 350                | 20                 | 16.1                |            |           | 44.4        |
|          | 2019 | Sidev           | 0.3                | 2.4          | 1.3                  | <u> </u>          | 51                | 21                 | 23                 | 2.5                 | 0.4        |           | 10.0        |
| P5       | 2015 | IVIIN<br>Madian |                    | 10.0         | 5.1                  | 6                 | 2                 | 292                | 2/0                | 9.1                 | 2.1        |           | 10.9        |
| P3<br>D0 | 2015 | Mey             |                    | 14.2         | 5.5<br>6.1           | 20                | 100               | 300<br>272         | 3/8                | 11.2                | 2.9        |           | 19.0        |
| го<br>DS | 2015 | StDov           |                    | 10.0         | 0.1                  | 30                | 21                | 25                 | 24                 | 10.0                | 4.2        |           | 40.1        |
|          | 2013 | Min             |                    | 3.4<br>1/1 ک | 2.0                  | /<br>0            | <u>ງ</u>          | 20                 | 24                 | 1.0<br>6.7          | 20         | 07        | 9.0<br>10 Q |
| PS       | 2010 | Median          |                    | 14.2         | 5.9<br>5 1           | 0                 | 2                 | 290<br>252         | 339                | 0.7<br>10 5         | ∠.9<br>2.0 | 0.7       | 1/ 2        |
| PS       | 2010 | Max             |                    | 10.2         | 5.1<br>6.4           | 10                | 2<br>28           | 201                | 369                | 13.5                | 5.3        | 1.2       | 25.1        |
| 10       | 2010 | ivian           |                    | 17.2         | 0.4                  | 20                | 20                | 501                | 000                | 13.0                | 5.5        | 1.5       | 20.1        |

Severn Sound Environmental Association – Raw Water Assessment

|         |      |           | Chlorophyll | Dissolved | Dissolved | Ammonia+ | Nitrate+ | Total<br>Kieldahl | Organic  | Total      | Secchi |           |        |
|---------|------|-----------|-------------|-----------|-----------|----------|----------|-------------------|----------|------------|--------|-----------|--------|
| Station | Year | Statistic | a "         | Carbon    | Carbon    | Ammonium | Nitrite  | Nitrogen          | Nitrogen | Phosphorus | Depth  | Turbidity | Colour |
|         |      |           | µg/L        | mg/L      | mg/L      | µg/L     | µg/L     | µg/L              | µg/L     | µg/L       | m      | NIU       | TCU    |
| PS      | 2016 | StDev     |             | 0.8       | 0.7       | 6        | 8        | 24                | 22       | 2.0        | 0.8    | 0.3       | 4.3    |
| PS      | 2017 | Min       |             | 10.1      | 4.6       | 12       | 1        | 304               | 280      | 8.2        | 2.0    | 0.9       | 11.9   |
| PS      | 2017 | Median    |             | 15.4      | 5.1       | 22       | 14       | 366               | 346      | 9.5        | 4.2    | 1.0       | 22.8   |
| PS      | 2017 | Max       |             | 19.0      | 6.2       | 28       | 62       | 422               | 401      | 11.5       | 5.3    | 1.4       | 37.8   |
| PS      | 2017 | StDev     |             | 2.7       | 0.5       | 5        | 17       | 36                | 38       | 0.9        | 1.1    | 0.2       | 8.9    |
| PS      | 2018 | Min       |             | 13.9      | 4.4       | 8        | 2        | 277               | 263      | 8.0        | 2.8    | 0.4       | 10.3   |
| PS      | 2018 | Median    |             | 17.0      | 4.6       | 26       | 7        | 370               | 344      | 9.2        | 4.2    | 0.9       | 13.6   |
| PS      | 2018 | Max       |             | 18.6      | 5.5       | 58       | 68       | 428               | 390      | 12.7       | 5.1    | 1.3       | 31.7   |
| PS      | 2018 | StDev     |             | 1.5       | 0.3       | 13       | 18       | 39                | 36       | 1.5        | 0.8    | 0.3       | 6.7    |
| PS      | 2019 | Min       |             | 7.8       | 4.5       | 12       | 1        | 276               | 242      | 7.8        | 2.3    | 0.5       | 11.5   |
| PS      | 2019 | Median    |             | 17.5      | 5.1       | 26       | 7        | 353               | 326      | 10.0       | 4.3    | 1.3       | 15.5   |
| PS      | 2019 | Max       |             | 19.4      | 5.5       | 38       | 88       | 374               | 362      | 11.4       | 5.5    | 1.6       | 48.6   |
| PS      | 2019 | StDev     |             | 3.4       | 0.3       | 7        | 27       | 29                | 34       | 1.2        | 1.1    | 0.3       | 10.9   |

### Appendix B – Long Term Summary Statistics and Long Term Trend Analysis for Water Quality

|         |                            |                        | First | Last |         |      |      |        |       | Mann Kendall         |       |
|---------|----------------------------|------------------------|-------|------|---------|------|------|--------|-------|----------------------|-------|
| Station | Parameter                  | Units                  | Year  | Year | # Years | Min  | Max  | Median | StDev | Test, <i>p</i> value | Trend |
| PM1     | Ammonia+Ammonium           | µg/L                   | 1997  | 2019 | 23      | 10   | 44   | 25     | 10    | 0.05                 | inc   |
| PM1     | Calcium                    | mg/L                   | 1997  | 2019 | 9       | 23.2 | 27.6 | 25.6   | 1.5   | 0.92                 | none  |
| PM1     | Chloride                   | mg/L                   | 1997  | 2019 | 12      | 11.8 | 23.3 | 16.2   | 4.0   | 4.41E-05             | inc   |
| PM1     | Colour                     | TCU                    | 2012  | 2019 | 8       | 12.0 | 22.5 | 15.8   | 3.9   | 0.90                 | none  |
| PM1     | Conductivity               | µS/cm                  | 1997  | 2019 | 17      | 197  | 251  | 220    | 15    | 0.02                 | inc   |
| PM1     | Dissolved Organic Carbon   | mg/L                   | 2010  | 2019 | 9       | 3.9  | 5.0  | 4.7    | 0.3   | 0.40                 | none  |
| PM1     | Gran Alkalinity            | mg/L CaCO <sub>3</sub> | 2012  | 2019 | 8       | 66.4 | 76.9 | 72.3   | 4.3   | 0.40                 | none  |
| PM1     | Magnesium                  | mg/L                   | 1997  | 2019 | 9       | 4.86 | 6.31 | 5.50   | 0.45  | 0.36                 | none  |
| PM1     | Nitrate+Nitrite            | µg/L                   | 1997  | 2019 | 23      | 3    | 78   | 12     | 18    | 2.13E-03             | dec   |
| PM1     | рН                         | -                      | 1997  | 2019 | 14      | 7.84 | 8.25 | 8.03   | 0.10  | 0.02                 | dec   |
| PM1     | Potassium                  | mg/L                   | 1997  | 2019 | 10      | 1.02 | 1.49 | 1.17   | 0.14  | 1.00                 | none  |
| PM1     | Secchi Depth               | m                      | 1997  | 2019 | 23      | 2.2  | 4.0  | 3.3    | 0.4   | 2.69E-03             | dec   |
| PM1     | Sodium                     | mg/L                   | 1997  | 2019 | 10      | 7.4  | 14.0 | 10.7   | 2.0   | 0.03                 | inc   |
| PM1     | Sulphate                   | mg/L                   | 2010  | 2019 | 9       | 4.3  | 10.6 | 9.2    | 1.8   | 0.76                 | none  |
| PM1     | Total Alkalinity           | mg/L CaCO₃             | 2012  | 2019 | 8       | 67.9 | 78.6 | 73.7   | 4.3   | 0.40                 | none  |
| PM1     | Total Kjeldahl Nitrogen    | µg/L                   | 1997  | 2019 | 23      | 297  | 371  | 340    | 22    | 0.17                 | none  |
| PM1     | Total Nitrogen             | µg/L                   | 1997  | 2019 | 23      | 307  | 475  | 377    | 38    | 0.07                 | none  |
| PM1     | Total Phosphorus           | µg/L                   | 1997  | 2019 | 23      | 11.8 | 16.0 | 12.8   | 1.3   | 0.53                 | none  |
| PM2     | Ammonia+Ammonium           | µg/L                   | 1969  | 2019 | 48      | 6    | 56   | 20     | 11    | 0.34                 | none  |
| PM2     | Calcium                    | mg/L                   | 1993  | 2019 | 12      | 22.9 | 27.0 | 24.3   | 1.5   | 0.84                 | none  |
| PM2     | Chloride                   | mg/L                   | 1993  | 2019 | 15      | 9.7  | 23.9 | 15.4   | 4.1   | 1.01E-05             | inc   |
| PM2     | Chlorophyll a              | µg/L                   | 1973  | 2019 | 40      | 0.7  | 6.0  | 2.4    | 1.4   | 4.35E-06             | dec   |
| PM2     | Colour                     | TCU                    | 1993  | 2019 | 11      | 6.9  | 22.2 | 14.0   | 4.7   | 0.22                 | none  |
| PM2     | Conductivity               | µS/cm                  | 1993  | 2019 | 20      | 173  | 249  | 216    | 18    | 0.01                 | inc   |
| PM2     | Dissolved Inorganic Carbon | mg/L                   | 1993  | 2019 | 9       | 15.2 | 17.4 | 17.0   | 0.8   | 0.25                 | none  |
| PM2     | Dissolved Organic Carbon   | mg/L                   | 1993  | 2019 | 12      | 3.2  | 5.0  | 4.4    | 0.5   | 0.09                 | none  |
| PM2     | Gran Alkalinity            | mg/L CaCO₃             | 2012  | 2019 | 8       | 65.5 | 74.9 | 71.6   | 3.6   | 0.11                 | none  |

Severn Sound Environmental Association – Raw Water Assessment

| Station | Parameter                | Units      | First<br>Year | Last<br>Year | # Years | Min  | Max  | Median | StDev | Mann Kendall<br>Test, <i>p</i> value | Trend |
|---------|--------------------------|------------|---------------|--------------|---------|------|------|--------|-------|--------------------------------------|-------|
| PM2     | Magnesium                | mg/L       | 1993          | 2019         | 13      | 4.68 | 6.21 | 5.49   | 0.40  | 0.68                                 | none  |
| PM2     | Nitrate+Nitrite          | µg/L       | 1969          | 2019         | 48      | 3    | 105  | 22     | 21    | 0.16                                 | none  |
| PM2     | рН                       | -          | 1993          | 2019         | 17      | 7.82 | 8.23 | 8.01   | 0.10  | 0.01                                 | dec   |
| PM2     | Potassium                | mg/L       | 1993          | 2019         | 14      | 0.94 | 1.92 | 1.11   | 0.24  | 0.27                                 | none  |
| PM2     | Secchi Depth             | m          | 1969          | 2019         | 48      | 1.9  | 4.1  | 2.6    | 0.6   | 0.01                                 | inc   |
| PM2     | Sodium                   | mg/L       | 1993          | 2019         | 14      | 6.1  | 14.3 | 10.0   | 2.4   | 7.58E-04                             | inc   |
| PM2     | Sulphate                 | mg/L       | 1993          | 2019         | 12      | 4.3  | 13.3 | 10.0   | 2.3   | 0.11                                 | none  |
| PM2     | Total Alkalinity         | mg/L CaCO₃ | 1996          | 2019         | 9       | 67.2 | 79.5 | 75.3   | 4.1   | 0.60                                 | none  |
| PM2     | Total Kjeldahl Nitrogen  | µg/L       | 1969          | 2019         | 48      | 285  | 400  | 340    | 31    | 7.93E-04                             | dec   |
| PM2     | Total Nitrogen           | µg/L       | 1969          | 2019         | 48      | 293  | 445  | 385    | 31    | 0.06                                 | none  |
| PM2     | Total Phosphorus         | µg/L       | 1969          | 2019         | 48      | 10.0 | 23.0 | 13.9   | 3.3   | 1.29E-09                             | dec   |
| PM6     | Ammonia+Ammonium         | µg/L       | 2011          | 2019         | 9       | 16   | 28   | 26     | 5     | 0.20                                 | none  |
| PM6     | Calcium                  | mg/L       | 2012          | 2019         | 8       | 23.8 | 27.3 | 25.8   | 1.2   | 0.55                                 | none  |
| PM6     | Chloride                 | mg/L       | 2012          | 2019         | 8       | 16.5 | 24.3 | 18.3   | 3.4   | 0.06                                 | none  |
| PM6     | Colour                   | TCU        | 2012          | 2019         | 8       | 13.7 | 30.9 | 17.3   | 6.1   | 0.90                                 | none  |
| PM6     | Conductivity             | µS/cm      | 2011          | 2019         | 9       | 215  | 254  | 231    | 15    | 0.48                                 | none  |
| PM6     | Dissolved Organic Carbon | mg/L       | 2012          | 2019         | 8       | 4.0  | 5.2  | 4.7    | 0.4   | 0.06                                 | none  |
| PM6     | Gran Alkalinity          | mg/L CaCO₃ | 2012          | 2019         | 8       | 67.8 | 75.9 | 72.4   | 3.1   | 0.03                                 | inc   |
| PM6     | Magnesium                | mg/L       | 2012          | 2019         | 8       | 5.13 | 6.41 | 5.73   | 0.41  | 0.72                                 | none  |
| PM6     | Nitrate+Nitrite          | µg/L       | 2011          | 2019         | 9       | 10   | 98   | 56     | 32    | 0.36                                 | none  |
| PM6     | рН                       | -          | 2011          | 2019         | 9       | 7.73 | 8.06 | 7.88   | 0.11  | 0.61                                 | none  |
| PM6     | Potassium                | mg/L       | 2011          | 2019         | 9       | 1.03 | 1.42 | 1.26   | 0.12  | 0.26                                 | none  |
| PM6     | Sodium                   | mg/L       | 2011          | 2019         | 9       | 10.1 | 14.9 | 11.7   | 1.8   | 0.05                                 | inc   |
| PM6     | Sulphate                 | mg/L       | 2012          | 2019         | 8       | 8.6  | 10.4 | 10.0   | 0.8   | 0.52                                 | none  |
| PM6     | Total Alkalinity         | mg/L CaCO₃ | 2012          | 2019         | 8       | 69.6 | 77.8 | 73.8   | 3.4   | 0.01                                 | inc   |
| PM6     | Total Kjeldahl Nitrogen  | µg/L       | 2011          | 2019         | 9       | 285  | 341  | 319    | 20    | 0.48                                 | none  |
| PM6     | Total Nitrogen           | µg/L       | 2011          | 2019         | 9       | 327  | 418  | 368    | 34    | 0.36                                 | none  |
| PM6     | Total Phosphorus         | µg/L       | 2011          | 2019         | 9       | 10.3 | 14.0 | 11.4   | 1.2   | 0.08                                 | none  |
| PS      | Ammonia+Ammonium         | µg/L       | 1992          | 2019         | 24      | 6    | 35   | 20     | 8     | 1.04E-03                             | inc   |
| PS      | Calcium                  | mg/L       | 2010          | 2019         | 8       | 20.8 | 28.4 | 25.4   | 2.3   | 0.55                                 | none  |

| Station | Parameter                | Units                  | First<br>Year | Last<br>Year | # Years | Min  | Max  | Median | StDev | Mann Kendall<br>Test, <i>p</i> value | Trend |
|---------|--------------------------|------------------------|---------------|--------------|---------|------|------|--------|-------|--------------------------------------|-------|
| PS      | Chloride                 | mg/L                   | 1999          | 2019         | 10      | 12.6 | 37.9 | 25.6   | 8.5   | 3.58E-04                             | inc   |
| PS      | Colour                   | TCU                    | 2012          | 2019         | 8       | 13.6 | 29.5 | 19.1   | 5.4   | 0.28                                 | none  |
| PS      | Conductivity             | µS/cm                  | 1992          | 2019         | 18      | 176  | 301  | 243    | 32    | 0.03                                 | inc   |
| PS      | Dissolved Organic Carbon | mg/L                   | 2010          | 2019         | 9       | 4.6  | 6.0  | 5.3    | 0.4   | 0.03                                 | dec   |
| PS      | Gran Alkalinity          | mg/L CaCO <sub>3</sub> | 2012          | 2019         | 8       | 55.2 | 77.0 | 68.2   | 7.3   | 0.01                                 | inc   |
| PS      | Magnesium                | mg/L                   | 2010          | 2019         | 8       | 4.39 | 6.13 | 5.23   | 0.60  | 0.11                                 | none  |
| PS      | Nitrate+Nitrite          | µg/L                   | 1992          | 2019         | 24      | 2    | 23   | 7      | 6     | 0.60                                 | none  |
| PS      | рН                       | -                      | 1992          | 2019         | 15      | 7.80 | 8.18 | 7.91   | 0.12  | 0.59                                 | none  |
| PS      | Potassium                | mg/L                   | 2010          | 2019         | 9       | 1.09 | 1.57 | 1.27   | 0.15  | 0.08                                 | none  |
| PS      | Secchi Depth             | m                      | 1992          | 2019         | 24      | 1.9  | 4.5  | 3.5    | 0.6   | 0.16                                 | none  |
| PS      | Sodium                   | mg/L                   | 2010          | 2019         | 9       | 10.0 | 20.3 | 16.6   | 3.5   | 0.01                                 | inc   |
| PS      | Sulphate                 | mg/L                   | 2010          | 2019         | 9       | 4.4  | 11.3 | 9.9    | 2.2   | 0.01                                 | inc   |
| PS      | Total Alkalinity         | mg/L CaCO <sub>3</sub> | 2012          | 2019         | 8       | 56.0 | 78.6 | 69.7   | 7.4   | 0.01                                 | inc   |
| PS      | Total Kjeldahl Nitrogen  | µg/L                   | 1992          | 2019         | 24      | 337  | 410  | 370    | 19    | 0.02                                 | dec   |
| PS      | Total Nitrogen           | µg/L                   | 1992          | 2019         | 24      | 360  | 445  | 384    | 20    | 2.07E-03                             | dec   |
| PS      | Total Phosphorus         | µg/L                   | 1992          | 2019         | 24      | 9.0  | 14.0 | 10.8   | 1.3   | 0.44                                 | none  |

Severn Sound Environmental Association – Raw Water Assessment

#### Appendix C – Algal Taste and Odour and Toxin Compounds from Station PM6 (SSEA data)

|            | Geosmin* | 2-Methyl isoborneol* | Total<br>Microcystin <sup>†</sup> |
|------------|----------|----------------------|-----------------------------------|
| Date       | (ng/L)   | (ng/L)               | (µg/Ĺ)                            |
| 28/06/2016 | 6        | <3                   | <0.10                             |
| 12/07/2016 | 6        | <3                   | <0.10                             |
| 26/07/2016 | 5        | 5                    | 0.14                              |
| 09/08/2016 | 6        | 5                    | 0.16                              |
| 23/08/2016 | 4        | 4                    | <0.10                             |
| 06/09/2016 | 8        | 6                    | <0.10                             |
| 20/09/2016 | 8        | 5                    | <0.10                             |
| 11/07/2017 | 6        | <3                   | <0.10                             |
| 25/07/2017 | 6        | 5                    | 0.17                              |
| 08/08/2017 | 5        | 10                   | 0.19                              |
| 21/08/2017 | 7        | 7                    | <0.10                             |
| 05/09/2017 | 9        | 6                    | <0.10                             |
| 19/09/2017 | 6        | 14                   | <0.10                             |
| 17/07/2018 | 6        | 4                    | <0.10                             |
| 31/07/2018 | 8        | 6                    | <0.10                             |
| 14/08/2018 | 8        | 9                    | <0.10                             |
| 28/08/2018 | 10       | 11                   | <0.10                             |
| 11/09/2018 | 10       | 10                   | 0.10                              |
| 25/09/2018 | 6        | 7                    | <0.10                             |
| 09/10/2018 | 8        | 5                    | <0.10                             |
| 16/07/2019 | 15       | <3                   | <0.10                             |
| 30/07/2019 | 12       | 7                    | 0.18                              |
| 13/08/2019 | 10       | 5                    | 0.11                              |
| 27/08/2019 | n.d.     | n.d.                 | 0.15                              |
| 10/09/2019 | 9        | <3                   | <0.10                             |
| 24/09/2019 | 7        | <3                   | <0.10                             |
| 08/10/2019 | 7        | <3                   | <0.10                             |

\*method detection limit for Geosmin and MIB is 3 ng/L †method detection limit for total microcystin is 0.10 μg/L















